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ABSTRACT: In reactive extrusion processes for polymerization, a multi-objective optimization model maximizing the monomer con-

version whilst ensuring the low energy consumption was constructed. The selections of reactive processing conditions could be set

automatically using an optimization methodology based on genetic algorithms coupled with the numerical simulation routines. Vari-

ous case studies were discussed. Comparison with experimental data indicates that the design of processing conditions can be per-

formed according to the prespecified objectives. VC 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41862.
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INTRODUCTION

Reactive extrusion involves the synthesis or modification of

polymers by melt-phase reactions in twin-screw extruders.1,2

The chemical reactions involve bulk polymerization, grafting,

blending, crosslinking and degradation of polymers. The high

viscosities, high temperatures, and short residence times make it

difficult to design and to control a chemical reaction. One has

to deal with considerable coupling variables involved in such

phenomena as fluid flow, heat transfer, and chemical reaction.3

The selections of reactive processing conditions such as the

material composition, screw geometry, and operating parame-

ters often involve a trial-and-error procedure which is very

time-consuming and expensive.

One of the effective methods of solving the above problems is to

establish an optimization methodology, by means of which the

optimum values of processing conditions can be obtained.

Because both the objective function and the constraints are non-

linear, it is difficult to build the explicit functions to directly

obtain the processing parameters. Numerical simulations have

been devoted to dealing with the nonlinear model equations.4–8

Using an implicit iterative algorithm, evolutions of key variables

such as residence time, monomer conversion, average molecular

weight, and fluid viscosity can be quantitatively predicted.

Recently, the numerical modeling routines have been coupled to

optimization methods such as the genetic algorithm and artificial

neural network to set automatically the processing conditions.

Using neural network method, Nascimento et al. proposed an

optimization procedure taking into account the safe operation

conditions, wear and tear of the equipment, product quality and

energy consumption, and applied the optimization approach to

the industrial process of nylon-6,6 polymerization in a twin-

screw extruder.9–11 Coupling a multi-objective evolutionary algo-

rithm with the Ludovic software, Gaspar-Cunha et al. maximized

the output and ensured the maximum melt temperature stays

within a prescribed range in the reactive extrusion process for e-
caprolactone polymerization.12,13

The above optimization methodology is powerful, however, it is

seldom used in industrial practice for the high price and low

efficiency of most existing computational tools. Most simula-

tions were based on a one-dimensional (1D) model. The objec-

tive functions have a uniform distribution in any axial cross

section of the extruder, which are different from the real condi-

tions.4 Objective functions based on three-dimensional (3D)

model meet well with practice, but they are always confined to

the partial process.14,15

The optimization methodology for reactive extrusion processes

is still in its infancy and further researches should be per-

formed. In our previous studies, we have built a 2D axisymmet-

rical model, introduced a semi-implicit iterative algorithm and

conducted the numerical simulation of reactive extrusion proc-

esses for polymerization.16 In this article, the reactive extrusion

process for the free radical bulk polymerization was chosen as

the optimization system. The multi-objective optimization

model taking into account the monomer conversion and the

energy consumption was constructed, and then the optimization

methodology based on genetic algorithms coupled with

the numerical simulation routines was established. Finally, an

example was studied to validate the methodology.
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CONSTRUCTION OF OPTIMIZATION MODELS

Optimization Model of Monomer Conversion

For a first-order free radical polymerization initiated by initiators,

the general formulation of the reaction kinetics is as follows:16

@X

@t
5Ae2E= RTð Þcini

1=2ð12XÞ (1)

where X denotes the monomer conversion, t the reaction time,

A the apparent frequency factor, E the apparent activation

energy, R the general gas constant, T the reactant temperature,

and cini the initiator concentration.

Considering the short residence time in an extruder and the

need of reducing monomer emission, the aim is to find operat-

ing conditions that maximize the monomer conversion

max X5max 12e2Acini
1=2te2E= RTð Þ

h i
(2)

where “max”, as the same is hereinafter defined, denotes the

abbreviation for “maximum”.

Optimization Model of Energy Consumption

Neglecting the power consumption associated with material

mixing, radiation and conduction, the theoretical energy con-

sumption W required by an extruder can be expressed as17

W 5 cpQ T2Tinð Þ1QDP=q
� �

t (3)

where cp denotes the specific heat capacity at constant pressure, Q

the mass flow rate, Tin the material temperature at the inlet of the

extruder, DP the discharge pressure, and q the material density.

The material temperature, mass flow rate, discharge pressure, and

reaction time are expected to be as low as possible in terms of

energy-conservation, which may result in low monomer conversion.

To solve this conflict, maximization of the monomer conversion per

unit energy consumption is introduced as an objective function

max
X

W
5max

12e2Acini
1=2te2E= RTð Þ

Qcp T2Tinð Þ1QDP=q
� �

t
(4)

Multi-Objective Optimization Model

Generally, the operating conditions that result in the minimum

energy consumption per unit monomer conversion may not

yield the maximum monomer conversion. It is necessary to har-

monize these conflicting objectives.13,18,19

The weighting coefficient method is introduced here. The two

objectives, max X and max X=Wð Þ, are endowed with the differ-

ent weighting coefficients x1 and x2, respectively. So the multi-

objective optimization model can be obtained

max u5max x1

X

C1

1x2

C2X

W

� �
(5)

where u, as the same is hereinafter defined, denotes the multi-

objective function. C1 and C2 denote the constants for normaliza-

tion processing.18 The importance of each single objective can be

considered as the criterion for setting the values of x1 and x2.

CONSTRUCTION OF CHEMORHEOLOGICAL MODELS

The power-law constitutive equation is generally adopted to predict

the shear rate dependence of the viscosity in bulk

polymerization2,16

g5
g0

ð11bcÞc (6)

where g denotes the apparent viscosity and c the shear rate. b

and c are two parameters. The zero shear viscosity g0 can be

empirically described as a function of temperature and molecu-

lar weight2,16

g05
K1e

Eg
RT cM M w M eqw � Mc

K2e
Eg
RT cM

5:4M w
3:4 M eqw > Mc

8<
: (7)

where Eg is the activation energy for fluid flow, cM the mass

concentration of polymer chains, M w the average molecular

weight of polymer chains, Mc the critical molecular weight for

entanglement effects in viscosity, K1 and K2 the material con-

stants. The relationship between the equivalent average molecu-

lar weight M eqw and the conversion is expressed as follows:16

M eqw5M w X1Mm 12Xð Þ (8)

where Mm is the molecular weight of the monomer.

OPTIMIZATION METHODOLOGY

As shown in Figure 1, the genetic algorithm was used to optimize

the processing conditions, and the finite volume simulation of

reactive extrusion processes was applied to solve the multi-

objective functions. The specific steps are shown as follows:

1. Population initialization: Define G as the number of evolu-

tionary generations and set the initial and maximum num-

bers of generations to be zero and Gmax , respectively. Then

the initial generation is generated randomly, taking into

account the parameters to optimize and the corresponding

limits of variation.

Figure 1. Flow chart of optimization methodology.
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2. Evaluation of decision variables: The numerical value of each

individual in the population of decision variables is obtained

by decoding each individual in the current population.

3. Numerical simulation: For each individual in the population

of decision variables, the finite volume analysis of reactive

extrusion processes is performed to get the values of the

objective functions by means of a semi-implicit iterative

algorithm. Detailed descriptions of the numerical algorithm

have been reported in Ref. [16].

4. Fitness evaluation: The fitness of each individual in the pop-

ulation of decision variables is calculated and ranked to

determine the selection rate.

5. Calculations for reproduction, crossover, and mutation: A

new generation is produced by means of the selection rate,

crossover rate, and mutation rate.

6. Termination judgement: The current number of the genera-

tion is added one, namely G11! G, and then the procedure

in Step 2 through Step 5 is repeated until the serial number of

the generation reaches the maximum number of generations.

EXAMPLES AND VERIFICATION

Case Studies

To validate the rationality of the constructed models, the multi-

objective optimization of the reactive extrusion process for

n-butylmethacrylate (n-BMA) polymerization was investigated,

and the simulated results were compared with Jongbloed’s

experimental data.20 The parameters of the extruder and mate-

rial properties are shown in Table I 16,20 and the input data for

optimization are listed in Table II.

It can be seen from Eqs. (2) and (4) that the objective functions

are mainly influenced by the barrel temperature, the mass flow

rate, the discharge pressure, the reaction time, and the initiator

concentration. The discharge pressure was measured with a

pressure transducer in the die region. Experimental results from

Ref. [20] showed that the discharge pressure was about 105 Pa.

The required heat energy was three orders of magnitude higher

than the required mechanical energy, which indicates that the

second term in the right section of Eq. (3) can be neglected.

In the simulation, the space of fluid flow was equivalently con-

sidered as a long axisymmetrical space and the inlet velocity of

the reactor model is calculated by the mass flow rate.16 The

reaction time can be calculated by

Dt I ; Jð Þ5 Dl

v I ; Jð Þ (9)

where Dt I ; Jð Þ denotes the time step on the Jth space point in

the Ith time step, Dl the distance between two adjacent nodes,

and v I ; Jð Þ the axial component of the flow velocity on the Jth

space point in the Ith time step. The experiment was limited to

14D by insertion of a seal although the maximum screw length

L is 25D, where D denotes the screw diameter. So the screw

length can be treated as an adjusted parameter in this study.

The extruder has five heating zones. The last four zones were

kept at a uniform temperature T225, whilst the first zone, clos-

est to the feed port, was kept at another lower temperature T1.

As mentioned above, four case studies will be analyzed sepa-

rately. Dealing exclusively with the barrel temperature Tb

(L514D; Q550gmin21), the first three cases are used to com-

pare with experimental data and determine the weighting coeffi-

cients x1 and x2

Case 1: max u Tbð Þ5max x1
X
C1

1x2
C2X
W

� �
x150;x251

Case 2: max u Tbð Þ5max x1
X
C1

1x2
C2X
W

� �
x151;x250

Case 3: max u Tbð Þ5max x1
X
C1

1x2
C2X
W

� �
x150:8;x250:2

The fourth case optimizes simultaneously the barrel temperature

and the screw length

Case 4: max u Tb; Lð Þ5max x1
X
C1

1x2
C2X
W

� �
x150:8;x250:2

According to the homopolymerization of BMA and the

copolymerization of BMA with HBMA, the constraints of

Table I. Parameters of the Extruder and Material Properties2,16

Parameters Numerical values

Nominal diameter of screws D 50 mm

Centerline distance of screws 45 mm

Slenderness ratio of screws L/D 14

Number of thread starts 2

Lead of screws 52 mm

Density of the material q 0.8783103 kg m23

Specific heat capacity
at constant pressure cp

2.013103J kg21 K21

Molecular weight of
monomer Mm

142 g mol21

Initial concentration
of monomer

6183.1 mol m23

Initial concentration
of initiator

70.0 mol m23

Apparent frequency
factor A

7.673108 m3/2

mol21/2 s21

Apparent activation
energy E

9.203104 J mol21

The parameter b in
power-law equation

0.2649 s

The parameter c in
power-law equation

0.7899

Critical molecular
weight for entanglement
effects Mc

30000 g mol21

Activation energy
for fluid flow Eg

1.763105 J mol21

Mass flow rate Q 50 g mol21

Table II. Main Input Data for the Optimization System

Parameters Numerical values

Population size 5

Maximum number of generations Gmax 200

Crossover rate 0.5

Mutation rate 0.02
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the barrel temperatures are 1008C � T1 � 1208C and 1308C �
T225 � 1508C. According to the requirements of energy saving

and emission reducing, the constraint of the screw length is

13 � L=D � 15 D50:05mð Þ.
The fitness of each individual in the population F is defined as

the absolute value of the multi-objective function

F Tb; Lð Þ5ju Tb; Lð Þj (10)

Optimization of Barrel Temperature

As shown in Figure 2, the average population fitness Favg

increases in the initial evolution process and then varies with

the increase of evolution generations, and the maximum popu-

lation fitness Fmax gets to a steady state when it evolves to gen-

eration 50 for Case 1 and generation 20 for Cases 2 and 3. This

phenomenon indicates that the numerical values of the decision

variables corresponding to the maximum fitness in each popula-

tion are preserved for the next population and that the optimal

objective has been obtained.

Figure 3 shows the evolutions of the barrel temperature corre-

sponding to the maximum fitness in each population. The

optimum barrel temperatures for Cases 1–3 are T151008C
and T22551308C, T151208C and T22551358C, T151008C and

T22551338C, respectively.

Verification

Taking the optimum barrel temperature as operating conditions,

the numerical simulation of the reactive extrusion is performed

Figure 2. Evolution of the average fitness and maximum fitness of each population (a) Case 1; (b) Cases 2 and 3.

Figure 3. Evolution of the barrel temperature corresponding to the maxi-

mum fitness of each population (a) T225; (b) T1.

Figure 4. Evolution of monomer conversion along the axial direction of

the extruder.
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using the semi-implicit iterative algorithm. The evolution of the

monomer conversion along the axial direction of the extruder is

shown in Figure 4. It can be seen that the simulated results

meets well with the experimental results (L 5 14D, Q 5 50 g

min21, T1 5 120�C, T2–5 5 130�C).

The monomer conversions for Cases 1–3 and the experiment

are 87.8%, 88.9%, 88.4%, and 87.8%, respectively. The energy

consumptions per unit conversion for Cases 1–3 and the experi-

ment are 91.12, 97.28, 91.39, and 95.00 kJ, respectively. It can

be seen that the minimum monomer conversion and energy

consumption per unit conversion are gained in Case 1, the

maximum ones are obtained in Case 2, and the values in Case

3 falls between the ones in Cases 1 and 2. The result indicates

that the multi-objective optimization model can meet the pre-

specified objectives by setting the values of x1 and x2.

Case 1 meets well with the experimental data. However, consid-

ering the short residence time in an extruder and the need of

reducing monomer emission, the high monomer conversion is

always put as the first consideration, and then is the low energy

consumption. Therefore, Case 3 meets well with industrial prac-

tice. The values of x1 and x2 are set to 0.8 and 0.2, respectively,

in the following optimization.

Optimization of Barrel Temperature and Screw Length

The evolutions of the average population fitness and the maxi-

mum population fitness of Case 4 are shown in Figure 5. It can

be seen that the maximum population fitness gets to a steady

state when it evolves to generation 40, indicating that the opti-

mal objective has been obtained.

Figure 6 shows the evolutions of the barrel temperature and

screw length corresponding to the maximum fitness in each

population. The optimum values of the decision variables are

T151208C; T22551368C; L=D513.

CONCLUSIONS

1. A multi-objective optimization model of reactive extrusion

process for polymerization was constructed to maximize the

monomer conversion whilst ensure the low energy

consumption.

2. The optimization methodology for reactive extrusion proc-

esses was established, in which the genetic algorithm was used

to optimize the processing conditions, and the finite volume

simulation was applied to solve the multi-objective functions.

3. Comparison with experimental data validates the rationality

of the constructed models and the optimization methodol-

ogy. The processing conditions can be designed according to

the pre-specified objectives.
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